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Abstract

This paper reviews various aspects of modeling an explosion on an aircraft, which can be extended to
more general structures. A brief summary of material and structural models is given, followed by a detailed
history of pulse–pressure loading models with an emphasis on free–free beams and how pulse
characteristics affect a structure’s response. Techniques to desensitize pulse shape effects are discussed,
which culminate in the form of pressure–impulse isodamage curves. Studies using random loading models
are also presented.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The designer must account for a variety of loadings which act on an aircraft during flight. These
include, but are in no way limited to, lift, drag and weight of the structure, cargo, and passengers.
But as a result of recent acts of terrorism, most notably the December 21, 1988 bombing of Pan
Am Flight 103 over Lockerbie, Scotland [1] and the events of September 11, 2001, explosive loads,
although grim, have also become a necessary consideration.
However, predicting the effects of an explosive load on a structure can be a difficult task. Due
to the high number of uncertainties inherent to an explosion, two similar sources can produce two
see front matter r 2004 Elsevier Ltd. All rights reserved.
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drastically different blasts with regard to total amount and range of damage. This point was
illustrated by Gatto and Krznaric [2], who experimentally tested bomb explosions in luggage
containers used in commercial airplanes. Using a charge detonated in the center of an empty
container as a base line, they recorded substantial reductions in over-pressure when a similar
charge was placed in a 50% or 75% full container. Furthermore, for a half-full container, the
peak pressure value dropped nearly 97% when the bomb was moved from the top bag to three
bags down inside the hold.
Moreover, depending on the nature of loading, a structure can exhibit both linearly elastic and
nonlinearly plastic behavior on its way to failure. So both the load and structure must be modeled
accurately to produce meaningful results. Chen [3] simulated the complex interaction between
these two components for the specific case of an explosion on an aircraft. Here, the blast
propagation was modeled as a fluid tetrahedral mesh, while the plane as a series of beam and shell
elements. Meanwhile, Dietz [4] described a similar study which revealed that a relatively small
increase in structural thickness resulted in a significant improvement in an aircraft’s ability to
withstand an internal explosion.
Keeping in mind this acute sensitivity between load and structure, the authors of this paper seek
to present a review of work done to model pulse–pressure loadings and their effects on various
structural models. As the amount of available literature regarding impact loading on
elastic–plastic and plastic structures is quite large, an emphasis is placed on work that distinctly
illustrates how altering attributes of the loading model changes the amount of deformation
sustained by the structure. Techniques to eliminate response sensitivity to pulse shape are also
covered. Additional focus is placed on studies regarding free–free beams, which best model
an aircraft in flight, pressure–impulse isodamage curves, which serve as useful design tools,
and probabilistic loading models, which more accurately depict bomb blasts than typical
deterministic models.
2. Structural, material and loading models

Four geometric models are primarily used throughout the literature to represent a general
structure. The most basic is a single degree of freedom (sdof) mass–damper–spring system. As
detailed by Biggs [5], the sdof system, shown in Fig. 1(a), is governed by the simple equation

M €y þ C _y þ Ky ¼ PðtÞ; (1)

where y is the displacement of the lumped mass M; while C is the damping coefficient, K the
structural stiffness, and PðtÞ the equivalent applied pulse loading of the system. Also commonly
used are a beam, a plate and a shell, all covered by Jones [6] and depicted in Figs. 1(b)–(d),
respectively, with various boundary conditions. As already mentioned, recent finite element
studies modeling aircraft response to bomb explosions have used beams and shells to represent the
structure. However, analysis of both sdof systems and plates can also produce useful insight in
terms of sensitivity to changes in both loading and aircraft structural model. Indeed, Fleisher [7]
modeled the luggage container of Ref. [2] as a sdof mass–spring system, while Singh and Singh [8]
used thin plates to represent aircraft skin panels.
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Fig. 1. Representative geometries with various boundary conditions and loadings: (a) a sdof model; (b) a free–free

beam with a concentrated pulse load; (c) a simply supported plate loaded by a uniform pressure; (d) a clamped

cylindrical shell loaded by a uniform pressure.

Fig. 2. Stress–strain diagram of (a) a rigid, perfectly plastic material, (b) an elastic, perfectly plastic material, and (c) an

elastic–plastic hardening material, all with unloading.

J.R. Florek, H. Benaroya / Journal of Sound and Vibration 284 (2005) 421–453 423
The given geometries are varied with respect to not only boundary conditions, but also to
material properties. Kaliszky [9] described five simple, applicable material models. By far, the
most frequently encountered in the literature are a rigid, perfectly plastic and a linearly elastic,
perfectly plastic material, whose stress–strain diagrams are shown in Figs. 2(a) and (b),
respectively. Meanwhile, a linearly elastic material follows the form of a linearly elastic, perfectly
plastic material, but only for stresses below the yield point. Also found are a rigid plastic
hardening and a linearly elastic–plastic hardening material. These two models are identical to a
rigid, perfectly plastic and a linearly elastic, perfectly plastic material, respectively, except that
plastic deformation is now proportional to the load for stresses above yielding. The stress–strain
diagram for the latter hardening material is shown in Fig. 2(c), where Et is the tangent
modulus.The applicability of a rigid, perfectly plastic material versus the more accurate, yet more
complex, elastic–plastic model was discussed by Symonds [10]. Based on calculations for a sdof
system subjected to an impulsive load, one where an infinitely large force acts over an infinitely
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small time, Symonds stated that the relative error between the two models could be conservatively
approximated by 1=R; where R is the energy ratio between entirely plastic work and elastic strain
energy capacity given by

R ¼
Yuf

Yuy=2
¼
2uf

uy

, (2)

where Y is the yield force, uf is the final displacement of the sdof system, and uy is the elastic
displacement equal to Y=K ; where K is the equivalent spring stiffness of the system. This criterion
was shown to be valid only for very short pulse loadings, whose durations are much less than the
system’s natural period, 2p

ffiffiffiffiffiffiffiffiffiffiffiffi
M=K

p
:

Symonds also outlined some mode approximation techniques, which were presented in greater
detail in Ref. [11], to estimate plastic deformation in more complicated structures. One such
method was used by Schleyer and Hsu [12] to predict the response of an elastic–plastic beam
subjected to a symmetrical pulse–pressure loading. As seen in Fig. 3, the beam was modeled in two
nonrigid halves. The idealization shown in Fig. 2(b) was used to model the stress–strain
interaction. Both nonlinear and rotational springs, with respective stiffness Kx and Kf; acted at
either beam end. The former modeled purely plastic behavior, while the latter elastic, perfectly
plastic characteristics of variable support conditions and plastic hinges. A third rotational spring,
one with the rigid, perfectly plastic characteristics of a central plastic hinge, connected the two
beam halves. Strain rate and strain hardening effects were neglected. The calculated beam
deflections were of the modal form:

wðx; tÞ ¼
Xn

i¼1

jiðxÞCiðtÞ, (3)

where jiðxÞ defines the cosinusoidal deformation mode shape and satisfies the geometric
boundary conditions of a given structure, and CiðtÞ represents the generalized displacements that
satisfy Lagrangian form equilibrium equations. The deflections passed through the following
three stages:
I.
 The combination of elastic flexural and either elastic or plastic membrane deformations
before the appearance of any plastic hinge.
Fig. 3. Elastic–plastic beam model of Schleyer and Hsu [12].
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II.
Fig.

impu
The switch from purely elastic to elastic–plastic flexural deformations. Stage IIa
corresponded to the switch when plastic hinges formed at the supports before the central
moment reached the yield moment, stage IIb when the reverse occurred.
III.
 The switch to purely plastic flexural deformations, with plastic hinges formed at all three
rotational springs.
These stages were processed numerically using a fourth-order Runge–Kutta time stepping
scheme. Comparisons were made between the present model, an ABAQUS-generated finite
element model, and various sdof models of other authors through plots of wmax=H versus p=pc for
various loading and boundary conditions. Here, H is the beam height, p the uniformly
distributed pulse loading, and pc the collapse load. Good agreement was found for cases of a
rectangular and triangular pulse, shown in Fig. 4 along with other pulse shapes commonly used in
the literature. The largest deviations occurred for small deflections in the elastic to elastic–plastic
range for a beam with clamped ends. As the authors’ technique is a modal approximation,
accuracy can always be improved by increasing n in Eq. (3) for each stage definition.
The work of Schleyer and Hsu is representative of many papers found in the literature.
Although the material and geometry assumptions may vary appreciably from one paper to the
next, it is almost universal that maximum deflection is the key indicator of response. This
deflection almost always occurs at the mid-point of a given geometry.
Further, the march through time while systematically checking critical values that define the
onset of each deformation stage is also very common. Typical milestones include:
(1)
 The static collapse load being achieved at mid-span, which initiates the formation of a central
plastic hinge. For a rigid plastic material, this event signifies the beginning of any deflection or
4. Common pulse shapes: (a) rectangular; (b) linear decay; (c) exponential decay; (d) triangular; (e) sinusoidal; (f)

lsive load.
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structural motion. When multiple effects are considered (e.g., shear and bending), a flow rule
or yield condition usually defines this milestone.
(2)
 The formation of dual traveling plastic hinges symmetric to mid-span, if the centrally acting
load is well in excess of the static collapse load. These hinges, which form in lieu of the single
central plastic hinge, move toward one another with a continually applied load.
(3)
 The traveling plastic hinges reaching mid-span, subsequently disappearing.

(4)
 Bending forces becoming negligible after a critical deflection is achieved at mid-span (e.g.,H=2
for a simply supported beam). At this point, only membrane forces act on the structure, which
behaves as a string.
Numerous studies of the past thirty years using similar procedures have been briefed in a series
of reviews by Jones [13–20]. These reviews covered a wide range of topics concerning the dynamic
plastic behavior of structures including the effects of considering finite displacements, rotary
inertia, strain hardening, strain rate sensitivity and transverse shear in the analysis. Unless
otherwise noted, these specialized effects are assumed negligible throughout the remainder of this
paper.
Further background can be found in Refs. [21,22]. The former text covers most of the topics
presented in this section, as well as throughout this paper, focusing on the dynamic plastic
behavior of cantilevers. Meanwhile, the latter text details explosive loads and their effect on
engineering structures.
3. Pulse shape effects

An actual bomb explosion, like most blast loads, has a random pressure-time history. However,
such an explosion invariably has a sharp pressure rise followed by a period of decay [22]. The
pulse shapes shown in Fig. 4 serve as idealizations, which facilitate the analytical computation of
structural response to such loads. They can easily be modified with respect to such attributes as
total impulse, peak pressure achieved, rise time and pulse duration to best match an actual
loading. It is clearly seen in Fig. 4 that only the triangular and sinusoidal pulses have finite rise
times, while the other pulses all have instantaneous rises to a peak pressure. Furthermore, all of
the pulses have gradual decays except for the rectangular and impulsive loads. It should be noted
that all of these pulse shapes act over a very small period of time, usually only for a fraction of a
second. The impulsive load is the limiting case which acts over zero time. Whereas the reviews by
Jones [13–20] primarily covered the plastic response of fixed-ended beams, plates and shells to
rectangular pulse loads, here, both plastic and elastic–plastic response of these structures and sdof
models subjected to various pulse shapes are considered.
Hodge [23] compared deflection results attained for a circular cylindrical shell exposed to
different shaped pulses having equal peak pressure and total impulse. He found that the deflection
achieved by a square (rectangular in Fig. 4) pulse roughly approximated that by an exponentially
decaying pulse only for pressures well in excess of the static collapse load, P0: For loads with
peaks less than 3P0; neither a square, trapezoidal nor doubly stepped pulse produced deflections
within 18% of that rendered by the corresponding exponential pulse. Furthermore, Hodge
showed that for such medium peaked loads having a finite rise time, a step could not be



ARTICLE IN PRESS

J.R. Florek, H. Benaroya / Journal of Sound and Vibration 284 (2005) 421–453 427
substituted for a linear rise even though peak pressure and impulse would remain constant.
Deviations between the two models increased substantially as peak pressure and rise time were
increased. For the same load range, Hodge also compared the deflections achieved by square
waves to that of a triangular pulse. With the same total impulse, the square wave results
significantly overestimated that of the triangular wave. However, when only the impulses for
pressures over P0 were matched, the square underestimated the triangular results. This latter
comparison of impulses is consistent with a rigid, perfectly plastic material assumption.
Using a simple constant-velocity recurrence formula to solve a nondimensional form of Eq. (1),
Biggs [5] developed maximum response charts for an elastic–plastic sdof system subjected to a
rectangular, linearly decaying, triangular and gradually applied load. For varying values of
Rm=F1; the ratio of yield load to maximum pulse load, the nondimensional maximum deflection,
m; was plotted versus td=T ; the ratio of pulse duration to the system’s natural period, for all four
load shapes. The relationship between the time of peak response and the pulse duration, or where
applicable rise time, was also charted. Meanwhile, Ayre [24] presented similar, but more
extensive, ‘‘response spectra’’ for a wide variety of pulse shapes acting on undamped sdof
systems. These shapes included various combinations of those depicted in Fig. 4. The charts of
both Biggs [5] and Ayre [24] can serve as design tools as they clearly illustrate how altering certain
pulse parameters (i.e., shape, pulse duration and rise time) affects the maximum deflection
achieved by the sdof system.
Stronge [25] examined the effect of pulse shape on the deformation of a simply supported, rigid
plastic beam subjected to a uniformly distributed pressure pulse. He sought to determine the
pulse shape that would result in the maximum deflection when either the impulse or work done on
the beam was constrained. In the former case, he found that the maximum possible deflection
was produced by an impulsive load. In the latter, pulse shape was immaterial so long as the
maximum pressure achieved was less than three times the static collapse load. This condition
prevented the formation of dual symmetrical traveling plastic hinges which limit a beam’s
transverse deflection. These findings agreed with comparisons made to an exponentially
decaying, a triangular and a doubly rectangular pulse, where the last pulse was simply the
combination of two equal intensity rectangular pulses separated by a specified period of zero load.
Stronge [26] later presented a lower deflection bound for a variety of rigid plastic geometries
subjected to both time and spatially varying loads. His work, along with the corresponding upper
bound detailed by Robinson [27], is representative of all bounding theorems, which serve as
common alternatives to analysis via modal approximation. The given bounds, based on an
assumed, kinematically admissible velocity field, obviously bracketed the possible values of
maximum deflection of a structure. For a simply supported beam acted on by a uniformly
distributed pressure pulse, the lower bound solution for an exponentially decaying pressure pulse
matched well with the exact rigid plastic solution. In contrast, bound solutions for rectangular
and triangular (linearly decaying in Fig. 4) pulses severely underestimated response for maximum
pressures up to twenty times the static collapse load. Furthermore, favorable comparisons were
made between the present bound and others found in the literature for impulsively loaded fixed
and cantilever beams, as well as for both simply supported and clamped circular plates and
cylindrical shells subjected to rectangular pulse loads.
Symonds and Frye [28] compared the responses of sdof rigid plastic and elastic–plastic
structures to low intensity pulse–pressure loading of varying rise time and duration. Continuing
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the former author’s earlier work [10], they dealt with rectangular, sinusoidal and linearly decaying
pulses having peak values less than twice the static collapse load. For such loadings, they showed
that a rigid plastic model was in good agreement with a corresponding elastic–plastic model when
t=To0:1 and R410; where t=T is the ratio of pulse duration to the system’s natural period, and
R is defined by Eq. (2). But for t=T40:1; not only did errors between the models become large,
they became nonconservative as well, underestimating the maximum displacement. Using the
rectangular pulse as an example, �100% errors were found when R ¼ 10 at t=T ¼ 0:9 and when
R ¼ 50 at t=T ¼ 4: Furthermore, Symonds and Frye observed that pulses with nonzero rise times
yielded wavy curves when displacement was plotted versus t=T for the elastic–plastic model. This
behavior was contrary to analogous curves plotted for the rectangular and linearly decaying
pulses not only in terms of smoothness, but also in that relative error tended to decay, albeit
sinusoidally, for increasing pulse duration. Zero percent error was even achieved at regular
intervals for sinusoidal and triangular pulses. The authors explained this tendency through
comparison with dynamic amplification factors of elastic shock theory.
On a similar note, Zhang and Gross [29] remarked on the relationship between pulse shape and
stress intensity factors in a cracked, infinite elastic solid. They showed that generally, dynamic
overshoots of the stress intensity factor, K̄I ðtÞ; were greatest early on (at times much less than the
time it takes for a stress pulse to travel over a characteristic crack dimension) during the loading
of an infinite pulse. Eventually, a static value of K̄I ðtÞ ¼ 1 was reached. In contrast, for a
finite pulse, stress intensity factor amplification increased with pulse duration, and statically
K̄I ðtÞ ¼ 0: Different peaks of K̄I ðtÞ were achieved for a step (rectangular in Fig. 4), linearly
increasing, linearly decreasing, cosinusoidally decreasing, triangular, sinusoidal, trapezoidal and
impulsive pulse.
Schubak et al. [30] proposed a simplified method for determining the response of a rigid plastic,
doubly symmetric beam with fixed ends to distributed rectangular pulse loads of varying intensity.
The authors decoupled the response into pure bending and pure string stages. Doing so enabled
them to find, through study of triangular pulses, that rise time had little effect on the final
maximum beam deflection, w0f ; for pulses having equal values of a nondimensional impulse
parameter given by

b ¼
p2mt2pN0

4mp0M0
. (4)

Here, pm is the maximum pulse load achieved, tp the pulse duration, m the beam mass per unit
length, p0 the static collapse load, andM0 and N0 are the respective fully plastic values of bending
moment and axial load. Plots of N0w0f =M0 versus b for loads up to 10p0 showed a less than 10%
difference between pulses with zero rise time and those that reached a peak at 0:3tp for bo1000:
For an infinite load, there was no difference at all.
Yankelevsky and Karinski [31] modeled a beam subjected to a symmetrical, distributed, short
duration dynamic loading as two rigid half beams either simply supported or pin-hinged at the
ends. Pulse loadings were either of rectangular, triangular (linearly decaying in Fig. 4) or
exponential shape. The only deformation during loading occurred longitudinally in a finite
number of elastic–plastic fibers, initially of zero length, which connected the two half beams.
Unlike most of the models covered, the extension of the various fibers allowed for not only
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calculation of a maximum deflection, but also of a time history of bending moments and
membrane forces, as well as a stress and strain distribution. The nondimensional maximum
deflection, Ymax=L; of the beam compared well with the rigid plastic models of other works for
each pulse shape, particularly at high pressures, where elastic effects became negligible and the
fibers effectively served as a plastic hinge. For a triangular pulse with varying peak pressures,
Ymax=L was plotted versus td=T ; the ratio pulse duration to the beam’s natural period. These
plots showed that maximum deflection occurred at different pulse durations for each peak load
case. Therefore, it seems that peak pressure has a greater influence on response than pulse
duration for the considered loading values.
From this section, it is seen that:
�
 Pulse loading shape has a large effect on the deformation of various structural models. Some
attributes of the loading seem to have a greater effect than others (e.g., peak pressure versus
pulse duration).
�
 Plotting attributes of the loading against one another can be useful in the design process.

�
 A rigid plastic assumption is invalid for pressure intensities near the static collapse load and
pulse durations near or above a structure’s natural period. In these cases, elastic effects must be
considered.
4. Free-free beams

In contrast to the studies of the previous section, those involving free-ended beams are now
discussed. With no end constraints, the free–free beam more accurately represents an aircraft in
flight. Papers on the dynamic loading of free–free beams date back over fifty years. However, in
the last twenty years, an emphasis has been placed on how energy is dissipated in such a beam.
In an early study, Lee and Symonds [32] analyzed the deformation of a rigid, plastic free–free
beam subjected to a triangular point pulse at mid-span. As a means of quantifying when one of
the milestones listed in Section 2 was reached, a dimensionless loading parameter was defined as

m ¼
Pl

M0
, (5)

where P is the point load at a given time, M0 is the limit moment, and l the half-length of the
beam. Milestone (1) was reached when m ¼ 4; milestone (2) when m ¼ 22:9: Unlike in most
papers, the deformation was not measured in terms of deflection, but rather in terms of a
deflection angle, y0: This angle was plotted as a function of time for different values of pulse
duration, 2T ; and mm; given by Eq. (5) when P is maximum. The time at which y0 achieved a
maximum, and the beam a steady-state response, was shown to be roughly 0:3mmT : The rigid
plastic assumption used was deemed applicable when:

y0
M0T

2=ml3
b

t2

2:5T2
,

where m is the beam mass per unit length, and t is the beam’s fundamental period of elastic
vibration.
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Symonds [33] reported on the same model subjected to rectangular, sinusoidal and triangular
point pulses at mid-beam. For all three load shapes, he plotted the theoretical maximum
deflection angle, y0m; as a function of mm: By doing so, Symonds found an empirical relationship
between the maximum deflection angle and some of the load characteristics given by

y0m ¼
A

mM
5=3
0 l1=3

I2P2=3m , (6)

where I is the impulse, and Pm the maximum pressure of a particular loading. The constant A
depended on load shape, taking on values of 0.043, 0.037 and 0.031 for a rectangular, sinusoidal
and triangular pulse, respectively. Eq. (6) was found to be reasonably valid for 15pmmp50:
However, Hodge [23] showed that this equation cannot be extended to other geometries,
particularly to a circular cylindrical shell.
Jones and Wierzbicki [34] analyzed the response of a uniform, rigid plastic free–free beam
subjected to a triangularly distributed, rectangular pressure pulse. They found that as the load
became impulsive, only 25% of the input energy went into plastically deforming the beam. The
remaining 75% caused a rigid body acceleration. The authors also briefed on the response of a
nonuniform stepped beam subjected to a uniformly distributed pressure. They considered these
two particular cases to ensure the onset of plastic deformation, as a free–free beam only moves as
a rigid body if it is both uniform and subjected to a similarly uniform pressure pulse. In addition,
a simple model of an aerospace vehicle was developed using a free–free stiffened cylindrical shell.
Assuming failure due to tensile rupture, they obtained the following relationship between pulse
duration time, t; and pressure magnitude, p0:

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cec

p0ðZ� 1Þ

s
, (7)

where ec is the critical failure strain, Z is the ratio of p0 to the collapse load, and C accounts for the
shell’s geometry. Eq. (7) was used to generate failure envelopes, which illustrate what combination
of Z and t will cause rupture failure. Some such envelopes are given in Fig. 5. The authors noted
that plastic rupture is not necessarily the cause of failure in all shells. Failure could also occur due
to plastic crumpling, plastic tearing or elastic fracture, none of which were considered in the
present study.
Yu et al. [35] considered an elastic–plastic free–free beam subjected to either a projectile impact
at mid-span or a triangularly distributed impulsive load. Their analysis assumed small deflections
and allowed for rotary inertial effects. A straightforward finite difference scheme was used to
calculate the transverse deflection w; acceleration €w; curvature k; and bending moment M along
the entire beam for a given time interval. For the case of projectile impact, bending moment was
plotted versus position at twenty different time instances from 0.048 to 3.321ms after impact. As
such, it was shown that the impact-induced flexural waves travel through four phases. Phase 1
described the formation of the elastic–plastic wave and its motion towards the free end. The
motion of the point of maximum bending moment was related to that of a traveling plastic hinge.
Phase 2 and 3 entailed the first and second respective appearance of the hinge moving back and
forth. In these stages, the wave that reflected off the free end interfered with the hinge. Finally, in
phase 4, the traveling hinge vanished as the beam rotated about mid-span, much like a stationary
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Fig. 5. Failure envelopes of a simplified aerospace vehicle for various critical strains, when C ¼ 0:03986: ——,
ec ¼ 5%; – – –, ec ¼ 8:5%; — —, ec ¼ 17%:
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plastic hinge. Smith and Hetherington [22] provided an introduction on stress wave propagation,
while Smart [1] detailed the potential devastating effects that such wave propagation, as induced
by a bomb blast, can have on an aircraft.
Moreover, Yu et al. [35] compared the behavior of their elastic–plastic model with that of a
rigid plastic simplification through use of conservation of energy and an energy ratio, R: Their R

was similar to the one of Eq. (2) with the initial kinetic energy of the impact mass substituted for
plastic work capacity in the numerator. In terms of the total input energy, 38% was dissipated
plastically as R ! 1; while 21% was dissipated plastically and 17% elastically when R ¼ 2:
In both cases, the remaining 62% of input energy was converted into the kinetic energy which
caused rigid body motion of the beam. On a deflection basis, the rigid plastic model matched well
with the elastic–plastic model, particularly at the beam’s mid-span. Both models captured the
general trend of an experimentally tested beam.
For the case of the triangularly distributed load, Yu et al. [35] illustrated that 75% of input
energy was converted to rigid body kinetic energy. Obviously, a rigid plastic model predicted the
remaining 25% went into plastic work. However, an elastic–plastic model predicted substantial
elastic work at low R values, dependent on the slenderness ratio of the beam, L=h: As L=h

decreased, so too did the amount of energy going into elastic work. Therefore, the rigid plastic
model, which is a minimum bound for elastic effects, becomes more applicable with shorter
free–free beams. Furthermore, a corresponding maximum bound was given in the form
of a simplified elastic–plastic model. This model assumed that two rigid plastic beam halves
were connected by an elastic–plastic rotational spring, similar to the beam in Fig. 3. The error
analysis used by Yu et al. [35] to compare elastic–plastic and rigid plastic results mirrors that used
in Refs. [10,28].
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Yang and Xi [36] compared the theoretical deformation of a free–free beam found from a
linearly elastic–plastic hardening model with experimental results. Their small deflection model
included rotary inertial terms. Derived from a minimum energy principle and in keeping with the
elastic–plastic hardening model of Fig. 2(c), their finite difference scheme was more complicated
than that used by Yu et al. [35]. In addition to the four quantities found by Yu et al., Yang and
Xi’s scheme calculated the axial displacement u; axial acceleration €u; stress s; strain e; axial force
N; and second-order moment L along the entire beam for a given time interval. Moreover, three
coefficients of the governing equation, A; B and C; also needed to be evaluated at every iteration.
For an impact acting transversely at a quarter-point of the beam, six stages of motion were
observed. Four of these corresponded to the phases noted by Yu et al. for an impact acting at
mid-span. The first additional stage covered the time between one wave first reflecting off the
short end and its opposite wave’s first reflection off the long end. The other stage described the
period that followed the end of rotation about a stationary hinge at the point of impact. In this
final stage, the beam moved as a rigid body as it vibrated purely elastically. However, the beam
was found to dissipate less plastic work when loaded at a quarter-point than at mid-span.
Therefore, failure due to plastic damage is more likely to occur when a beam is loaded
symmetrically as opposed to unsymmetrically. The theoretical and experimentally observed
motions again agreed with one another.
Yang et al. [37] examined the small deflection response of a rigid, perfectly plastic
free–free beam subjected to a concentrated step (rectangular in Fig. 4) load. Unlike in
most studies, they not only varied the magnitude of the load, P; but also the position along
the beam where it acted. As a result, the authors discovered five different response
mechanisms. These are shown in Fig. 6, where L is the beam half-length, Mp the fully plastic
bending moment, and b a measure of position. Mode I was a rigid body motion, while modes II
and III were both single hinge mechanisms. Meanwhile, mode IV developed a double hinge
and mode V a triple hinge. The beam was found to be most resistant to deformation when
the load was applied at a critical value of b ¼ 0:6595L: This is the value where the first
four response modes intersect one another in Fig. 6. In contrast, the beam was found to be
least resistant to damage when the load was applied to the free end (b ¼ 1). Here, the beam
finished the rigid body mode at the smallest possible P: Furthermore, as in Refs. [34,35],
the partitioning of input energy was examined. Rigid body motion was found to consume
at least 67% of the available energy, which could be higher depending on the response
mechanism. This value was slightly higher than the 62% noted by Yu et al. [35] for a projectile
impact at the beam’s mid-span. As a rigid plastic assumption was used, no energy went into
elastic deformation.
Ahmed et al. [38] studied a finite element elastic–plastic free–free beam model subjected to
either a single or two point impact load. Each load was delivered by an independent impactor.
Newmark’s time integration scheme was used to solve the coupled nonlinear system, which was
strain rate sensitive and governed by a von Mises yield criterion. Their approach compared well
with that of Yu et al. [35] and a rigid plastic assumption for a single point impact at mid-span. In
contrast though to previous studies, the impactor was allowed to separate completely from the
beam during rigid body motion. After separating early on, the impactor and beam eventually
rejoined. However, the splitting resulted in only about 21% of the initial impactor kinetic energy
being eventually transferred to the beam, over half of which resulted in rigid body motion. For
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Fig. 6. Response modes for a free–free beam for varying load magnitudes and positions [37].
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the two point load case, about 37% of the initial energy transferred to the beam. Again, just over
half of this total went into rigid body motion, the rest into deforming the beam.
Other studies involved the response of damaged free–free beams. Zhang and Yang [39], as well
as Ruan and Yu [40], examined the effect a small notch in the beam had on how the beam
deformed and dissipated energy. These beams were shown to go through the same deformation
modes illustrated in Fig. 6, and dissipate energy similarly to the beams in previously discussed
studies, except when the loading occurred near the notch. This work can be extended to show
how initially small damage sustained by an aircraft can eventually result in failure.
From this section, it is seen that:
�
 Concerns with regard to pulse shape and a rigid plastic assumption for previously discussed
geometries extend to free–free, and particularly slender, beams.
�
 The majority of energy input on a free–free beam goes into rigid body motion, not plastic
deformation.
�
 Failure envelopes can serve as useful design tools, depicting the combination of loading
parameters that result in structural failure.
�
 Where a free–free beam is impacted can affect what deformation mode it adheres to, how energy
is dissipated and how flexural waves propagate through the beam.
5. Eliminating pulse shape effects

For over thirty years, Youngdahl [41] has worked on the problem of eliminating pulse shape
effects on the response of various structures. Early on, he examined rigid, perfectly plastic models
of a circular plate, reinforced circular cylindrical shell, free–free beam and circular shell. The first
two were subjected to uniform pressure, the third to a concentrated force at mid-span, and the last
to a ring load. The pulse shapes, which constituted each of these loadings, were taken as
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rectangular, linearly decaying, exponentially decaying, triangular and sinusoidal. For each of the
four structural models, Youngdahl sought to unify the maximum deflection achieved by each of
the five pulse shapes. In doing so, he determined key parameters of a pulse which, when equal for
dissimilar shapes, would predict approximately equal deflections. The first of these parameters
was the total impulse defined by

Ie ¼

Z tf

ty

PðtÞdt, (8)

where PðtÞ is the loading function and ty and tf are the times when plastic deformation begins and
ends, respectively. The second was the effective load defined by

Pe ¼
Ie

2tmean
, (9)

where tmean; the time interval between the onset of plastic deformation and when the centroid of
the pulse occurs, is given by

tmean ¼
1

Ie

Z tf

ty

ðt � tyÞPðtÞdt. (10)

For a rectangular pulse with constant pressure P and pulse duration t; Ie ¼ Pt; tmean ¼ t=2 and
therefore, Pe ¼ P: So the definition for effective load, given by Eq. (9), simply reduces an
arbitrarily shaped pulse into an equivalent rectangular pulse of equal impulse.
For the first three structure types, the maximum deflection, W 0ðtf Þ; was found to be equal to

I2e f ðPeÞ; where f ðPeÞ is a derived function, different for each structure type. This relation was
only approximately true for the circular shell, whose governing equations were more awkward to
evaluate. As such, when W 0Py=I2e was plotted versus Pe=Py for each pulse shape of a particular
structure, where Py is the static yield pressure, the five resultant curves were nearly
indistinguishable. The largest deviation occurred, as expected, with the approximated circular
shell solution. In contrast, the plotted shape curves were clearly differentiable when the abscissa
Pe=Py was replaced by Pmax=Py: Fig. 7(a) shows this differentiability for the specific case of a
free–free beam, where g is the beam mass per unit length, and L the beam half-length. Meanwhile,
Fig. 7(b) shows how all curves nearly collapse onto the rectangular curve of Fig. 7(a) when
W 0Py=I2e is plotted versus Pe=Py: Youngdahl’s method virtually eliminated load shape effect
altogether from the response of the four given structures. This result is important since precise
measurement, as well as prediction, of an entire pulse shape and peak force value can prove
to be difficult.
When the pulse–pressure loading is not uniform, P becomes a function of both position and
time. For a rigid, perfectly plastic circular cylindrical shell, Youngdahl [42] took Pðz; tÞ as the
product of a load shape FðzÞ; purely dependent on axial position, and a pulse shape CðtÞ; purely
dependent on time and analogous to the pulse shapes of Fig. 4. In order to reduce both load and
pulse shapes to equivalent rectangles as he did for PðtÞ in his earlier paper, Youngdahl defined an
effective load and effective pulse shape. The former was defined as

Fe ¼
½
R zy

0 FðzÞdz
2

2
R zy

0 zFðzÞdz
,
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Fig. 7. Dependence of W 0ðtf ÞPy=I2e for a free–free beam on (a) Pmax: ——, rectangular; – – –, linear decay; — —,

sinusoidal; — – —, triangular; – –, exponential decay; (b) Pe: ——, rectangular, linear decay; – – –, exponential decay,

sinusoidal, triangular pulse.
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where zy is the initial location of a formed plastic hinge. Meanwhile, the effective pulse shape,Ce;
was given by Eq. (9), substituting CðtÞ for PðtÞ: As a result, various load shapes collapsed onto
nearly a single curve when U0rP0RH=I2e was plotted versus Le=

ffiffiffiffiffiffiffiffi
RH

p
: Here, U0 is the maximum

deflection, r the surface density, P0 a function of Py; R the radius, H the thickness, and Le is the
effective half length of the loaded region given by

Le ¼
1

Fe

Z L

0

FðzÞdz,

where L is the actual half length of said region. Furthermore, the plots of U0rP0RH=I2e versusCe

for a rectangular, triangular and exponentially decaying pulse were also virtually identical.
Therefore, response of a cylindrical shell can be made independent of both load and pulse shape.
Should this result be extended to more general structures, the modeling of a space- and time-
dependent explosive load can be made significantly easier.
However, should L be a function of time, the analysis of a rigid plastic shell becomes
considerably more difficult. Youngdahl [43] found that for such a case the final deformation
depended on four parameters. The effective applied force, Fe; was analogous to that defined in
Eq. (9), while the effective applied moment, Ge; was defined by substituting the applied moment
GðtÞ for PðtÞ in Eqs. (8)–(10). Further, the final deformation also depended on the effective half-
length Le; now a function of the impulses of both applied load and moment, and the deflection
attained if the load was purely impulsive. These parameters were also significant in Youngdahl
and Krajcinovic’s treatment [44] of an infinite plate subjected to a general pressure pulse.
Moreover, additional complications arose in the shell analysis if the now time-dependent L was
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growing. These included an increased pulse shape effect on response and an inapplicability of
standard modal techniques.
Youngdahl [45,46] applied similar techniques to a simply supported rigid, plastic circular
plate. His earlier work assumed a uniform pressure distribution, while the later, an axisymmetric,
but otherwise arbitrary distribution. Unlike in Ref. [42], Youngdahl [46] determined that
the pressure Pðr; tÞ acting on a circular plate did not need to be represented as the product
of a load and a pulse shape. For loads below that which would cause the formation of a
central hinge band, maximum deflection was found to be a function of only Pe and tmean;
defined in Eqs. (9) and (10), respectively. However, for higher loads, maximum deflection was
found by

W ð0; tf Þ ¼ f ðPe; tmeanÞ � f ðPn

e ; t
n

meanÞ,

where f is the same function that defined maximum deflection at lower loads, and Pn
e and tnmean

have identical formulations to that of Pe and tmean except that the bounds of integration ty and tf

are now the time instants when the hinge band forms and vanish, respectively. This subtraction
principle held despite the problem being nonlinear in nature.
Furthermore, Youngdahl [47] considered the effect of rigid plastic strain hardening on
a sdof system. He calculated the maximum deflection of the system, Uðo; tf Þ; in terms of
three parameters. The first two, In and Fn

e ; were analogous to Ie and Pe; defined in Eqs. (8)
and (9), respectively. The third, which characterized the effect of strain hardening, was
given by

On ¼
oIn

Fy

, (11)

where o is the natural frequency of the system, and Fy is the yield load. However, unlike in the
previous studies, these parameters could not be associated with an equivalent rectangular pulse. In
order to do so, thereby making the parameters more physically meaningful, the stars were simply
dropped from these definitions. In other words, three alternative parameters were defined, where
I was given by Eq. (8), Fe by Eq. (9), and O by Eq. (11) with In replaced by I : Plotting
Uðo; tf ÞFy=I2 versus Fe=Fy for various values of O; curves for a rectangular, exponentially
decaying and ramped pulse collapsed onto one another only when Oo1: As O increased, the
curves noticeably separated, but nonetheless kept the same general shape while remaining
relatively close to one another. By allowing tf ! 1 in the definitions of I ; Fe and O; three
additional parameters, I0; Fe0 and O0; were also defined. These new parameters, which were more
easily calculated, made the total impulse and effective load independent of o: However, when
Uðo; tf ÞFy=I20 was plotted versus Fe0=Fy; the three pulse shape curves diverged even more and no
longer maintained the same trend when O4p: This divergence was partly attributed to the need
for higher order moments, usually associated with stochastically loaded models, when calculating
Uðo; tf Þ for an increasing O: Not withstanding, eliminating pulse shape effects is considerably
more difficult when strain hardening is taken into account.
From this section, it is seen that:
�
 The pulse shape effect can be virtually eliminated for many rigid plastic geometries subjected to
a uniform loading.
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�

Fi

rig
Structures with nonuniform loading distributions can also be dealt with, but require more
complicated integral expressions in the calculation of effective parameters.
�
 Considering specialized effects, such as strain hardening, further complicates these calculations.

6. Pressure–impulse isodamage curves

As noted by Abrahamson and Lindberg [48], pressure–impulse characterization schemes have
been in use for nearly fifty years. Such a scheme, shown in Fig. 8, serves as a simple design tool
that clearly illustrates what combination of pressure and impulse of a given load will produce an
equal structural response. When a response, predicated by maximum deflection, is deemed critical,
pressure–impulse pairs that fall above and to the right of the corresponding curve are deemed
unsatisfactory. Such pairs will result in structural failure. In contrast, pairs that fall below and to
the left of the critical curve are viewed as acceptable.
Abrahamson and Lindberg developed pressure–impulse (P � I) curves for rectangular,
triangular (linearly decaying in Fig. 4) and exponentially decaying loads acting on a variety of
structures. These structures included linear elastic and rigid plastic sdof spring–mass systems, as
well as rigid plastic beams and plates. As seen in Fig. 8 for the linear spring–mass system, the
curves for the three different pulse shapes only collapsed onto one another for values of P=P0 or
I=I0 greater than 10, where P0 is the magnitude of the step load, and I0 the ideal impulse that
individually produces a critical displacement. The deviations at mid-curve were about 20% for the
sinusoidal and triangular load, and about 40% for the sinusoidal and conservative rectangular
load. Similar discrepancies arose with the other geometries, which indicate that pulse shape is
universally important in determining a structure’s critical response. In spite of this finding, the
hyperbolic P � I curve shape, with asymptotes at both P=P0 and I=I0 ¼ 1; was consistent for all
pulse shapes. This general shape established three load regions—the short-duration region
g. 8. Critical load curves for a linear spring–mass system: rectangular, triangular, exponential load from left to

ht [48].
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controlled by impulse, the long-duration region controlled by maximum pressure, and the mid-
duration region mutually controlled by both pressure and impulse. The curve shape also
suggested an approximation of the form:

P

P0
� 1

� �
I

I0
� 1

� �
¼ 1.

This equation best matched the P � I curves of the exponentially decaying loading function for
both sdof models. Furthermore, the authors found that for this pulse shape, with the form:
PðtÞ ¼ Pmax expð�t=TÞ; a critical displacement was most efficiently achieved when the decay
constant T ¼ t=4; where t is the system’s natural period. They also suggested a means of deriving
a critical curve for more complex structures. This method entailed breaking the structure into
simpler parts, superposing each part’s P � I curve onto a single plane, and taking the most
conservative outline.
Zhu et al. [49] used Youngdahl’s work [41] to develop characteristic curves (c.c.) for rigid,
perfectly plastic models of a simply supported beam and circular plate, as well as a reinforced
circular cylindrical shell, subjected to a uniformly distributed pulse loading. These curves
illustrated what combination of total impulse and effective load, given by Eqs. (8) and (9),
respectively, would lead to structural failure according to the Tresca yield criterion. Ie=I0 was
plotted versus Pe=Py for each of the first five pulse shapes in Fig. 4 acting on a given structure,
where I0 is the ideal impulse. Just as in Youngdahl’s work, the five resultant curves were nearly
indistinguishable. Moreover, the c.c. of the different geometries were also nearly identical. This
result implies that such curves may be independent of structural geometry. As such, the authors
proposed that for an arbitrary pulse shape and geometry, the c.c. can be given by

6

5

Ie

I0

	 
2
1�

Py

Pe

	 

¼ 1 when

Pe

Py

p2, ð12Þ

Ie

I0

	 
2
1�
4Py

5Pe

	 

¼ 1 when

Pe

Py

X2. ð13Þ

Zhu et al. [49] also sought to simplify the calculation of the total impulse, Ie: For
nonrectangular pulses, the time when plastic deformation ends, tf ; must be found iteratively from
a zero velocity condition given by Ref. [41] as

Pyðtf � tyÞ ¼

Z tf

ty

PðtÞdt. (14)

Once tf is found, Ie is given by either side of Eq. (14). To eliminate the need for iteration, Zhu et
al. defined the impulse, I ; and effective load, P0

e; as in Eqs. (8) and (9), respectively, except that ty

was now taken as zero, and tf as the time when the pulse loading is removed (t ¼ 1). When I=I0
was plotted versus P0

e=Py; the five resultant c.c. for each of the three geometries clearly deviated
from one another for P0

e=Pyo2: Consequently, when using the simplified impulse and effective
load, Eq. (12) becomes invalid.
Vaziri et al. [50] produced what they termed ‘‘isoresponse curves’’, which served the same
purpose as the characteristic curves of Abrahamson and Lindberg [48] and Zhu et al. [49]. Their
research was exclusive to a rigid, perfectly plastic beam with either simply supported or clamped
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end conditions subjected to a rectangular pulse. The beam deflected according to the milestones of
Section 2 and the simple flow rule given by

M

M0
þ

N

N0

	 
2
¼ 1,

whereM is the bending moment, N the axial load at the beam’s mid-span, andM0 and N0 are the
respective fully plastic values of these quantities. They plotted isoresponse curves, namely Pm=P0;
the ratio of pulse intensity to collapse load, versus b from Eq. (4), for small and large deflections
(low and severe damage), as measured by the deflection ratio df =h; of beams with both end
conditions. In each case, the clamped end curves were slightly to the right of their simply
supported equivalents. Even though Vaziri et al. plotted pressure as a function of the impulse
squared (p2mt2p of Eq. (4) reduces to I2 for a rectangular pulse), these curves, shown in Fig. 9,
appear similar to the P � I curves in Fig. 8, with three clearly distinguishable load regions.
Furthermore, the curves also resemble the failure envelopes for a free–free beam, shown in Fig. 5.
In terms of range of applicability, Vaziri et al. stressed that even for small deflections, geometry
changes have a significant effect on the beam’s dynamic behavior. They also predicted that their
rigid plastic model would be nonconservative for low intensity pulses loaded for a length of time
approximately equal to the beam material’s elastic period. This prediction was confirmed by
Symonds and Frye [28].
In two papers, Li and Meng [51,52] extended Youngdahl’s work to eliminate pulse load shape
effects in both sdof elastic and elastic–plastic structures. Solving Eq. (1) for zero initial
displacement and velocity and no damping, a nondimensional pressure and impulse were
Fig. 9. Isodamage curves for low damage of a clamped beam: df =h ¼ 0:25; 0:5; 1:0 from left to right [50].
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obtained, given by

p ¼
Fm

ycK
¼

1R tm

0 f ðt0Þ sinðtm � t0Þdt0
(15)

and

i ¼
I

yc

ffiffiffiffiffiffiffiffiffi
MK

p ¼ p

Z td

0

f ðtÞdt, (16)

where Fm is the maximum value of the load FðtÞ; f ¼ F=Fm; yc is a pre-defined critical
displacement, and tm and td are nondimensional values of maximum deflection and loading times,
respectively. From the nondimensional pressure and impulse, isodamage curves, also referred to
as pressure–impulse (p � i) diagrams, were generated. Just as Abrahamson and Lindberg [48] had
done, Li and Meng [51] broke the p � i diagram into three distinct regimes. Again, the first was
controlled by the impulse, while the last, the quasi-static regime, by the pressure. Both p and i

contributed in the dynamic regime II where the curve satisfied

gðp; iÞ ¼
ymax
yc

¼ 1, (17)

where gðp; iÞ is a parabolic shape function, and ymax the maximum structural displacement
achieved for a given loading. A structure fails when gðp; iÞ41: It should be noted that the p � i
diagram actually follows Eq. (17) throughout all regimes, with impulse driving the equation in
regime I and pressure in regime III. However, like in Ref. [48], it was only in regime II that the
isodamage curves for a rectangular, triangular (linearly decaying in Fig. 4) and exponentially
decaying pulse differed from one another. To eliminate the shape effect in this regime, Li and
Meng proposed an empirical method. The pair defined the effective pressure and impulse as

pe ¼
1

ie

þ 0:5 (18)

and

ie ¼
ði � 1Þn2

n1
, (19)

where n1 and n2 are solutions of two different least squares-derived quadratic equations involving
a particular pulse shape’s centroid. Values of n1 and n2 for the three pulse shapes mentioned are
given in Table 1. This least squares approximation to eliminate shape effect does not seem as
satisfying as the derived method of Youngdahl [41]. As the quadratic approximating equation was
based on only the centroids of the three given pulse shapes, there is no guarantee that a fourth
pulse shape’s values of n1 and n2 will continue their trend. Further, the pe � ie diagrams for the
three given pulse shapes, although closer together than their respective p � i diagrams, were not at
all collapsed onto a single curve. Then again, the assumption of an elastic material prevented the
same mathematical simplifications that Youngdahl used for a rigid plastic material from being
applied here.
For a sdof elastic–plastic structure, Li and Meng [52] used the material model illustrated in
Fig. 2(b). As such, the response followed a more general case of Eq. (1), where K was replaced by
a defined resistance function RðyÞ; whose value at yielding is R0: The resultant p � i diagram
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Fig. 10. p � i diagram for an exponentially decaying load acting on a sdof elastic–plastic system: a ¼ 0:1; 0:2; 0:3; 0:4;
0:5; 0:6; 0:7; 0:8; 0:9; 1:0 from left to right [52].

Table 1

Sample n values for various pulse shapes for use in Eq. (19)

Rectangular Triangular Exponential

n1 0.035 0.150 0.300

n2 0.850 0.700 0.700
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followed Eq. (17) just like the elastic case considered earlier, where p and i are defined as in
Eq. (15), save the third term, and Eq. (16). Also as before, the authors recognized that their
resultant p � i curve, shown in Fig. 10, was influenced by loading pulse shape. To remove this
influence, they suggested using the empirical method of their earlier work, given by Eqs. (18) and
(19). Li and Meng claimed that the p � i curve for the elastic–plastic structure was also influenced
by a parameter a defined as

a ¼
R0

ycK
. (20)

To remove the curve’s influence on a; the authors suggested transforming p and i to p=h1ðaÞ and
i=h2ðaÞ; respectively, before satisfying Eq. (17), where h1ðaÞ and h2ðaÞ are least squares, quadratic
functions of a: This procedure seems rather arbitrary. First, the end result was a single p � i
curve for each load shape, instead of the ten shown in Fig. 10. Each single curve appeared to be
almost identical to that of its corresponding nontransformed case for a ¼ 0:8: Moreover, for a
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given material, the quantity R0=K represents the elastic yield deflection, which is a constant.
Therefore, by Eq. (20), only the assigned critical deflection yc will vary a: Since yc defines the
p � i diagram by Eq. (17), a should inherently influence the isodamage curve, shifting it just as the
deflection ratio, df =h; did the isoresponse curve for Vaziri et al. [50].
Li and Meng [52] also derived an expression for the p � i diagram of a sdof rigid plastic
structure. Using nondimensional versions of the impulse and pressure of Eqs. (8) and (9), called ie

and pe; respectively, the following relation held:

yf

yc

¼
i2e
2

1

a
�
1

pe

	 

, (21)

where yf is the final and maximum deflection achieved, and a is still given by Eq. (20).
The expression for the resultant isodamage curve was found by setting Eq. (21) equal to 1 as per
Eq. (17). The p � i diagram of the sdof rigid plastic structure had the same general shape as that
of the purely elastic and elastic–plastic sdof cases. Li and Meng noted that Eq. (21) agreed
with Youngdahl’s assertion that maximum deflection for a general rigid, plastic structure is of the
form I2ef ðPeÞ:
Li and Jones [53] studied the dynamic response of a fully clamped, rigid plastic circular
plate subjected to a uniform general blast loading. They accounted for both bending and
shearing effects. The deformation mode was found to depend on a dimensionless parameter
given by

n ¼
Q0R

2M0
, (22)

where R is the radius of the plate, and Q0 and M0 are, respectively, the transverse shear force
and bending moment per unit length required for plastic flow. For different values of n;
the dimensionless mid-point deflection, W 0; was plotted versus a modified Pe of Eq. (9)
for a rectangular, linearly decaying and exponentially decaying pressure loading. The
modification to Pe was the same as made by Zhu et al. [49] in defining P0

e: The plots showed
that values for the three pulse shapes collapsed onto a single curve for np3; and nearly onto a
single curve for higher values of n: Therefore, the method of Youngdahl [41] to eliminate
pulse shape effects is applicable even when transverse shear forces are considered. Li and
Jones further modified the effective impulse and pressure of Youngdahl [41] by substituting t1;
the response time of the transverse shear sliding phase, for tf in Eqs. (8) and (9). The resulting
I1 and P1 were used to develop critical curves for mode III failure, when transverse shear
severs around the supports, of a fully clamped circular plate. These curves, shown in Fig. 11,
followed the form of Eq. (21) with ie and pe; respectively, replaced by nondimensional versions
of I1 and P1; and a substituted with a function of n: Note that for larger values of n; the
i1 � p1 curves deviate from the distinct three-regime curves of Refs.[48,50–52], which neglect
shear effects.
Li and Jones [54] used a similar approach when dealing with a rigid plastic, short cylindrical
shell acted on by a blast loading. But in this case, boundary conditions were taken as either simply
supported or fully clamped, depending on the value of a parameter k; while the circumferential
membrane force was considered in addition to the respective longitudinal bending and transverse
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Fig. 11. Critical curves for severance around the supports of a fully clamped circular plate: n ¼ 2; 3; 4; 5 from left to
right. Dashed lines represent case as p1 ! 1:
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shear forces. Furthermore, the shell deformation mode depended on two other parameters. The
first was a modified n of Eq. (22), where the shell half-length L was substituted for R: The second
was a parameter c; defined by

c2 ¼
N0L

2

2M0R
, (23)

where R is the radius of the shell and N0 the membrane force per unit length required for plastic
flow. For a fully clamped shell (k ¼ 1),W 0 was again plotted versus the modified Pe for the three
different load shapes, but this time for different values of both c and n: The pulse shape curves
again virtually collapsed onto one another, though deviations were more noticeable for the lower
c value cases. In general, shear forces were found to most likely cause failure for high intensity
loads acting on a fully restrained shell with low values of both c and n: Yet, shear effects were
found to have less of an influence on a cylindrical shell than on either a rigid plastic plate or beam,
as discussed in Ref. [55].
From this section, it is seen that:
�
 P–I diagrams all have the same parabolic shape with three distinct regions of response.

�
 The P–I diagram of a complicated structure can be derived from the diagrams of simpler,
constituent pieces.
�
 Methods discussed earlier to eliminate pulse shape effect can be used to compare P–I diagrams
of different geometries.
�
 The parameters of Eqs. (22) and (23) can be used to determine if considering shear effects is
necessary.
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7. Other sensitivities to loading models

In general, making small changes to the loading model should only cause small changes to a
structure’s response. However, as documented in numerous studies, sometimes small perturba-
tions of the load can produce radically different deflection values in terms of both magnitude and
direction. Examples of such behavior are now discussed.
Santiago and Bhattacharya [56] analyzed the sensitivity of a plate’s response to loading
details via computer simulations of a bomb blast. Six finite element models were used for
the plate. The elastic, elastoplastic and combined (material and geometric) nonlinear models,
each with either fixed or sliding edges, which served to bracket the actual boundary conditions
of an experimental setup, were subjected to three different loadings. Although these loadings
differed significantly in terms of shape, maximum pressure achieved and total impulse, they
were based on the same explosion model, but calculated via hydrocode using different spatial
intervals. As the mesh became finer, peak values of pressure and impulse increased. Response
was found to be predominantly influenced by the impulse intensity, which is not surprising since
the loading time was taken as approximately one-ninth of the plate material’s natural period for
all trials. Hence, the maximum deflection should occur in the short-duration region of the
isodamage curve, which according to Abrahamson and Lindberg [48] is controlled by impulse.
The two edge conditions produced no visible effects in the elastic and elastoplastic materials, while
for the combined nonlinear model, the maximum deflection was moderately higher in the sliding
end case of all three load runs. Generally, the maximum deflections were found in the
elastoplastic models, the lowest in the most accurate combined nonlinear model. Meanwhile, for
all loading trials, the elastic models exhibited a complete recovery and reversal of deflection
direction. For some trials, the combined nonlinear model exhibited a similar, but much less
drastic reversal of deflection.
For the past two decades, Symonds and various workers have examined structures that
similarly deflect in a counterintuitive manner, in a direction opposite that of the applied load, for a
small range of forcing values. Symonds and Yu [57] first noted such behavior while using the finite
element code ABAQUS to perform analysis on a pin-ended, elastic–plastic beam subjected to a
uniformly distributed rectangular pressure pulse. They compared their displacement results with
those furnished by colleagues using seven other codes for the same problem. None of the results
matched each other, and many exhibited the counterintuitive behavior. Attempting to
analytically explain this behavior, the authors made use of a simpler Shanley-type elastic–plastic
model subjected to a point load at mid-span. This model was identical to the one used by
Yankelevsky and Karinski [31], except that there were only two elastic–plastic fibers in the cell
connecting the two rigid half beams. For this model, Symonds and Yu found that a key
parameter was f0; the beam angle when pulse unloading began. When f0 was greater than the
angle at which fully plastic tension begins, the model deflected in the expected direction. In
contrast, when f0 was less than the fully plastic angle, the model could deflect in the opposite
direction. The authors surmised that if the structure was only loaded partly into the plastic
phase, it would exhibit much less resistance to snapping back than the fully plastic structure.
In their example, counterintuitive deflection occurred only when f0 fell between 0.086 and
0.092 rad. This range was represented by a slot in a characteristic diagram plotting extreme
rotation angles versus f0:
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Borino et al. [58] continued this work, attempting to explain the anomalous behavior of a
damped Shanley-type model in terms of the system’s total and elastic strain energy. By plotting
these energies as a function of beam rotation angle for various values of f0; they were able to
visualize and interpret the complicated behavior. Whereas the undamped case of Symonds and
Yu [57] yielded one slot in the characteristic diagram, the lightly damped trial (z ¼ 0:1) of Borino
et al. produced two smaller slots in the same vicinity. However, with arbitrarily small damping
(z ¼ 0:01), 25 such slots appeared in the range 0:071of0o0:098 rad: Therefore, the undamped
system is not a limiting case of the very lightly damped system. Moreover, it cannot even
correctly predict the direction of the final displacement of its damped counterpart. Damping was
noted to have two consequences. It reduced the total energy, bringing the system to equilibrium,
and changed the shape of the final elastic strain energy curve, making it more difficult for the
counterintuitive behavior to occur. As their energy analysis only involved the beam’s recovery
history following the first displacement maximum, the exact shape of the applied pulse was
immaterial.
Lee et al. [59] extended research on the subject to a fixed-ended, two degree of freedom (2dof)
Shanley-type model with additional elastic–plastic cells at the quarter points. Meanwhile, Qian
and Symonds [60] analyzed the pin-ended, elastic–plastic beam with which Symonds and Yu [57]
first observed the counterintuitive phenomenon. These models showed a much greater sensitivity
to both the amount of damping and magnitude of the point load, P; than the previously discussed
sdof model. This acute load sensitivity is clearly seen in Fig. 12 for z ¼ 0:01: In both studies, the
energy approach of Borino et al. [58] was used, power density spectra were plotted and the
Lyapunov characteristic exponent (LCE) calculated for various loads to interpret this chaotic
behavior. Power density spectra, covered in Section 8, depict chaotic behavior in terms of energy
spikes at certain key frequencies, while the LCE does so quantitatively. But unlike Lee et al.,
Qian and Symonds used Galerkin’s method, which assumes deflections of the modal form of
Eq. (3), to derive the equations of motion. This method furnished simpler equations to solve at
each iteration.
Fig. 12. Time histories of displacement of a lightly damped 2dof system, when z ¼ 0:01: ——, P ¼ 1200:000001 N;
– – –, P ¼ 1200:000002 N [60].
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It should be noted that the counterintuitive behavior described in Refs. [57–60] is not merely a
computational phenomenon, nor is it limited to occurring only in beams. Li et al. [61], as well as
Kolsky et al. [62], witnessed said behavior while experimentally testing clamped aluminum alloy
beams impacted at mid-span. Varying the impact velocity instead of f0; the former authors
observed the anomalous behavior about half the time when velocities ranged between 39 and
50m/s. Moreover, amongst recent papers, Bassi et al. [63] documented the behavior in plates,
Lepik [64] in cylindrical shells and Galiev [65] in both plates and shells.
Further, it is also worth noting that, as briefed in Refs. [63,65], the counterintuitive
behavior was actually documented in the Soviet Union nearly a decade prior to Symonds and Yu
[57]. The Soviet study found that, at times, circular metal plates displaced opposite the load
direction when subjected to an underwater explosive blast. Galiev [65] also cited a similar study
performed in air. Clearly, this phenomena could easily occur due to an explosion on board an
aircraft.
From this section, it is seen that:
�
 Care must be taken when transferring a loading model from paper to a computer program.

�
 Sensitivity of all parameters must be considered when validating results, particularly when a
structure exhibits small plastic deformation.
�
 Counterintuitive behavior can be explained by analyzing energy relations and power
density spectra.
8. Probabilistic loading models

To this point, only deterministic loading models, in terms of pulse and distribution shape, have
been considered. But due to uncertainties inherent to an explosion, random models are more
appropriate. In this section, studies using probabilistic models in conjunction with previously
mentioned methods are discussed.
But before proceeding, some necessary probability is now briefly reviewed. A probability
density function (PDF), f X ðxÞ; maps the relative likelihood of a particular value of a variable x
occurring. The area under the f X ðxÞ curve equals 1, denoting that x will always fall within a
specified range of values. Common PDFs include the uniform, normal, lognormal and Poisson
densities. The normal, or Gaussian, density is governed by

f X ðxÞ ¼
1

s
ffiffiffiffiffiffi
2p

p exp �
1

2

x � m
s

� �2� �
,

where m is the mean and s the standard deviation of variable x: Plotting f X ðxÞ versus x for
�1oxo1 yields the classic bell-shaped curve, which shows that a randomly selected x is most
likely close to the mean, and almost always within three standard deviations of the mean. Many
naturally occurring processes are governed by a Gaussian distribution.
Furthermore, a joint probability distribution, f X 1X 2...X n

ðx1; x2; . . . ; xnÞ; maps the relative
likelihood of n events occurring simultaneously. However, a bomb explosion is a random
process with respect to both space and time. Therefore, an appropriate density function would be
of the form f X 1X 2...X n

ðx1; x2; . . . ;xn; t1; t2; . . . ; tnÞ: But such a density function can be difficult to
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deal with mathematically. As a simplification, a stationary process can be assumed, i.e.,

f X 1X 2...X n
ðx1; x2; . . . ;xn; t1; t2; . . . ; tnÞ

¼ f X 1X 2...X n
ðx1;x2; . . . ; xn; t1 þ Dt; t2 þ Dt; . . . ; tn þ DtÞ: ð24Þ

For a one- or two-event stationary process, respectively, Eq. (24) reduces to

f X ðx; tÞ ¼ f X ðxÞ (25)

and

f X 1X 2
ðx1;x2; t1; t2Þ ¼ f X 1X 2

ðx1; x2; tÞ, (26)

where t ¼ t2 � t1: Eq. (25) can be used to find the first-order probability moment, or mean, of a
stationary process. Likewise, Eq. (26) can be used to find second-order moments, such as the
autocorrelation function RXX ðtÞ or cross-correlation function RXY ðtÞ; which are simply a measure
of randomness. It is common that a nonstationary process, such as an earthquake or bomb
explosion, be modeled as the product of a stationary function and a deterministic envelope.
When t ¼ 0; the autocorrelation function reduces to the mean square value of the variable X ðtÞ;
or EfX ðtÞ2g; which, depending on the physical definition of X ðtÞ; can be a measure of a process’
average energy. The power spectral density (PSD) function, SðoÞ; is simply the Fourier transform
of RXX ðtÞ: As such, it too is a measure of the energy distribution of a process, but in the
frequency domain as opposed to the time domain. Similarly, the cross-power spectral density
(CSD) is defined as the Fourier transform of RXY ðtÞ:
A typical PSD function, as shown in Fig. 13(a), will only have a large peak at one or a few select
frequencies. These are the key frequencies to focus upon when using a modal approximation
technique [10,11] for determination of maximum structural deflection. In contrast, a white noise
process, shown in Fig. 13(b), is a mathematical idealization that assumes SðoÞ is constant for all
o: Many studies assume such a PSD function. Ref. [66] can be consulted for a much more
detailed discussion on the presented probability topics.
Kennedy and Iyengar [67] considered a pin-ended, viscoplastic, or strain-rate sensitive, circular
plate subjected to a transverse pulse load having a Gaussian distribution. They used a simplified
yield condition which considered bending moments and membrane forces separately. Despite this
simplification, trials were made both including and excluding membrane force interaction in the
moment-dominant deformation phase I. In contrast, phase II only accounted for membrane
Fig. 13. Representative PSD functions: (a) general PSD; (b) white noise process.
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force effects. In all cases though, plate deflections were dependent on a parameter g given as

g ¼
b

s
ffiffiffi
2

p ,

where b is the radius of the plate, and s the standard deviation of the loading. By changing g; any
loading ranging from a uniform distribution (g ! 0) to a concentrated force (g ! 1) could be
simulated. Comparing these two extreme cases for varying strain-rate sensitivities, the authors
found that for large impulses, calculations that excluded membrane forces in phase I always
overestimated maximum deflection. However, for smaller impulses, ignoring membrane forces
underestimated maximum deflection at higher values of g: For both small and large impulses, a
viscoplastic plate yielded only slightly higher deflections than its strain-rate insensitive
counterpart. For equal impulses, plates with g ¼ 2:5 centrally deflected about five times as
much as those with g ¼ 0:05: Therefore, the pulse shape effect plays a significant role even when a
loading is probabilistically determined.
Chang [68] subjected a simple space structure model to a random excitation, pðx; tÞ: The model
consisted of a hysteretically damped, free–free beam with a concentrated massM variably located
a distance a from one of the ends. The beam deflection, yðx; tÞ; depended on the following
equation of motion:

EIð1þ izÞ
q4yðx; tÞ
qx4

þ ½m þ Mdðx � aÞ

q2yðx; tÞ

qt2
¼ pðx; tÞ,

where E is Young’s modulus, I the area moment of inertia of the beam, m the beam’s mass per
unit length, and z the hysteretic damping ratio. Assuming pðx; tÞ stationary and the cross-
correlation function, Rpx1

px2
; known, modal techniques were used to find the loading’s

cross-spectral density CSD function and, in turn, the mean square values of displacement,
bending moment, stress and strain along the beam. For example, the mean square displacement
was given by

E½y2ðxÞ
 ¼
1

2p

X1
j¼1

X1
k¼1

fjðxÞfkðxÞ

Z þ1

�1

HjðoÞHn

kðoÞSQjQk
ðoÞdo,

where fjðxÞ represents the mode shape of the jth mode, o is the frequency, and SQjQk
ðoÞ is the

modal forcing’s CSD function. Meanwhile, HjðoÞ is the frequency response function defined by

HjðoÞ ¼
1

ð1þ izÞo2j � o2
,

where oj is the natural frequency of the jth mode, andHn
j ðoÞ is a complex conjugate. Assuming a

CSD function of the form S0e
�aðx1�x2Þe�bo2 ; where a and b are constants, Chang found that

increasing S0 increased the uncertainty of the loading. This, in turn, increased the structure’s
probability of failure. Unfortunately, the techniques used were valid only for linear systems.
Therefore, only elastic systems subjected to forces well below those that would cause yielding can
be dealt with in a like manner. Yet, some extension can still be made to elastic–plastic structures,
particularly free–free beams.
Dolinski [69] formally defined the failure condition for a rigid plastic structure under random
loading in terms of its motion, x; with respect to a linear limit surface, SLðxÞ ¼ 0: Assuming that the
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load vector, XðtÞ; was a Gaussian process with stationary, twice differentiable components, he stated
that the plastic deformation, UðtÞ; could be represented as the summation of a random number of
incremental displacements. These incremental values were only functions of the following five
parameters: tf ; the duration of structural motion, Xðt0Þ and Xðt0Þ; the loads at which x leaves and
returns to the limit surface, respectively, and XoE and X0E ; the respective equivalent levels of XðtÞ
during and after excursion from the limit surface. The last two parameters were given by

XoE ¼
1

t0 � t0

Z t0

t0
XðtÞdt

and

X0E ¼
1

tf � t0

Z tf

t0
XðtÞdt,

where tf is the time when motion stops. These equivalent loads are reminiscent of the effective load
defined in Eq. (9). In order to determine the actual magnitude of each incremental plastic
displacement and therefore of UðtÞ; Dolinski transformed all X values into Taylor expansions of
xðtÞ: This transformation allowed him to apply a standard modal approximation technique, like that
of Eq. (3), to calculate UðtÞ: The aforementioned assumptions enabled the displacement vector to be
modeled as a Markov process, one whose future probabilities are determined by its most recent
values, and the structural reliability, RðtÞ; to be governed by a Poisson distribution.
Li and Liu [70] accounted for uncertainty in their analytic treatment of the counterintuitive
phenomenon of Symonds and Yu [57]. They used the pin-ended, elastic–plastic beam model of the
previous authors, and subjected it to a rectangular pulse with a normally distributed pressure
intensity, p0: This pulse’s mean intensity of 0.9465MPa was equal to the mean of the calculated
range of counterintuitive occurrence, 0:903pp0p0:990MPa: A standard deviation of 5% of the
range width was assumed. Randomly selecting 180 values of p0 with the given distribution,
the anomalous response was recorded 58% of the time. This percentage was similar to the
experimentally observed 50% of Li et al. [61]. Therefore, uncertainty of parameters should be
introduced when modeling a parameter sensitive system, such as the pin-ended beam, to more
closely capture its actual physical behavior.
From this section, it is seen that:
�
 In order to work with complicated probabilistic data, often times, simplications must be made.
Two such simplications are a stationary and white noise process.
�
 Some techniques previously discussed for deterministic loads can be extended for use with
random loads.
�
 Random loads are more realistic than purely deterministic loading models. They can capture
actual physical phenomena, which may seem counterintuitive otherwise.
9. Concluding remarks

This review summarizes studies carried out throughout the last fifty years which can be applied
to modeling a bomb explosion on an aircraft. Beams, plates, shells and sdof systems are used as
representative structures subjected to variously shaped pulse pressure loads. Altering attributes
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of the loading model, such as impulse, peak pressure, rise time and pulse duration, is shown to
have a significant effect on maximum deformation sustained by these structures. Youngdahl, in
particular, developed methods to essentially eliminate this effect in the four considered structures,
assuming rigid plastic behavior. The applicability of these methods to random loads on
elastic–plastic structures must be tested.
Furthermore, the behavior of free–free beams is closely examined. Such beams can absorb large
amounts of energy from an explosive load, much of which goes into rigid body motion. This
transfer of energy must be dealt with in an actual aircraft.
Moreover, the sensitivity of response to loading model, as well as to all material parameters,
must be thoroughly investigated. Without doing so, the validity of all results is questionable. The
use of a probabilistic loading model can only compound this uncertainty. However,
pressure–impulse isodamage curves, shown to be an effective means of testing the damage-
sustaining capability of a structure subjected to a deterministic loading, can easily be extended to
cases involving a more random loading.
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